Sesquiterpenoids and Norsesquiterpenoids from the Soft Coral Lemnalia africana

Jaroslaw Jurek, and Paul J. Scheuer
J. Nat. Prod., 1993, 56 (4), 508-513• DOI:
10.1021/np50094a009 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/np50094a009 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

SESQUITERPENOIDS AND NORSESQUITERPENOIDS FROM THE SOFT CORAL LEMNALIA AFRICANA

Jaroslaw Jurek and Paul J. Scheuer*
Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822

Abstract

Sixteen sesquiterpenoids and norsesquiterpenoids, six of them new, were isolated from the octocoral Lemnalia africana. Antileukemia activity (P-388) was found only in the known eremophilane derivative 15.

Beginning with the isolation of the sesquiterpene alcohol africanol [1] from an Indonesian octocoral Lemnalia africana (May)(1), this Pacific soft coral and other members of the family Nephteidae have been a source of diverse sesquiterpenoids. The ErOAc extract of L. africana from Pohnpei, Micronesia, displayed P-388 antileukemia activity. Fractionation and purification furnished sixteen sesquiterpenoids and norsesquiterpenoids, six of which are new and will be described in this paper. The P-388 activity appeared to be confined to the known 11,12-dihydroxy-6, 10-eremophiladiene [15] (2).

RESULTS AND DISCUSSION

An EtOAc extract of the soft coral L. africana, collected by scuba on the east shore of Pohnpei, Micronesia, at -7 m , displayed antileukemia activity in the P-388 assay. Repeated cc, tlc, and hplc of the extract afforded 16 compounds, six of them (2-7) new.
${ }^{1} \mathrm{H}$-nmr and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra of the neolemnane 2 displayed signals similar to those of the known compounds 12 and 16 (2). Hreims and ${ }^{13} \mathrm{C}$-nmr measurements of 2 suggested a formula of $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3}$ with six degrees of unsaturation. Ir signals at 1737 and $1717 \mathrm{~cm}^{-1}$, coupled with ${ }^{13} \mathrm{C}$-nmr signals at $76.3,170.2$, and 202.7 ppm , indicated acetoxy and carbonyl functions for 2. These data together with four signals of olefinic carbons required that $\mathbf{2}$ was bicyclic. HMQC and HMBC correlation studies allowed unambiguous assignment of all ${ }^{13} \mathrm{C}-\mathrm{nmr}$ signals and their connectivities. The value of the diaxial coupling constant ($J=10.0 \mathrm{~Hz}$) of $\mathrm{H}-12$ (from a spin-decoupling experiment) and nOe correlations (Me-15 to $\mathrm{H}-2$; $\mathrm{H}-12$ to $\mathrm{H}-4 ; \mathrm{H}-6$ to $\mathrm{H}-4$) allowed assignment of relative stereochemistry of 2 . The difference of $\mathbf{2}$ compared to previously reported 12 and 16 (2) was the lack of oxygenation at C-10.

The ir spectrum of aristolane derivative 3 displayed strong absorption at 1730 cm^{-1}. The ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectrum indicated the presence of an ester (171.4 ppm) and a trisubstituted double bond (143.3 and 121.0 ppm). These data and the molecular formula of $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2}$ derived from hreims required 3 to be tricyclic. The ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum revealed three methyl groups (two singlets at 1.10, 1.09 and a doublet at 0.97 ppm), and a methylene group adjacent to an oxygen (3.81 and 3.63 ppm , doublets, $J=10.8 \mathrm{~Hz}$). Detailed analysis of ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra plus $\mathrm{HH} \operatorname{COSY}$ and HMQC experiments allowed unambiguous assignment of all ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ signals, leading to a tricyclic skeleton including cyclopropane. This conclusion was further supported by an HMBC spectrum. Placement of the C-C double bond was possible by long-range correlation of $\mathrm{H}-9$ to $\mathrm{C}-10, \mathrm{C}-1, \mathrm{C}-5, \mathrm{C}-7$, and $\mathrm{C}-8 .{ }^{1} \mathrm{H}-\mathrm{nmr}$ spin-decoupling revealed an equatorial $\mathrm{Me}-14$ on the basis of a diaxial $\mathrm{H}-4-\mathrm{H}-3 \beta$ coupling constant ($J=13.5 \mathrm{~Hz}$). This result together with nOe correlations between $\mathrm{H}-15$ and $\mathrm{H}-6 ; \mathrm{H}-13$ and $\mathrm{H}-8 \alpha$, and $\mathrm{H}-4 ; \mathrm{H}-14$ and $\mathrm{H}-9 \beta, \mathrm{H}-3 \beta$, H-6 disclosed the relative stereochemistry and established the exo position of the $\mathrm{C}-12$ acetate.

Tricyclic diketone 4 had a molecular formula of $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}$ (hreims and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ data), requiring five sites of unsaturation. From ir and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ data, which suggested

1

$2 \mathrm{R}=\mathrm{H}$
$12 \mathrm{R}=\mathrm{OH}$
$16 \mathrm{R}=\mathrm{OAC}$

3

4

$5 \mathrm{R}=\mathrm{OAc} ; \mathrm{R}^{\prime}, \mathrm{R}^{\prime \prime}=\mathrm{CH}_{2}=$
$6 H=6 \beta$
$18 \mathrm{R}=\mathrm{OH} ; \mathrm{R}^{\prime}, \mathrm{R}^{\prime \prime}=\mathrm{CH}_{2}=$
$7 \mathrm{H}=6 \alpha$
$19 \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{OH}, \mathrm{R}^{\prime \prime}=\mathrm{Me}$

$9 \mathrm{R}, \mathrm{R}^{\prime}=\mathrm{CH}_{2}$
$10 \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{OH}$

$11 \mathrm{R}, \mathrm{R}^{\prime}=\mathrm{CH}_{2}$
$17 \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{OH}$

$13 \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{OH}$

15
$14 \mathrm{R}, \mathrm{R}^{\prime}=\mathrm{O}$
two carbonyl groups (211.5 and $207.7 \mathrm{ppm} ; 1710 \mathrm{~cm}^{-1}$), compound 4 was tricyclic. The ${ }^{13} \mathrm{C}$-nmr spectrum of 4 also indicated two carbon atoms connected to an oxygen (at $\delta 78.0 \mathrm{~s}$ and $\delta 67.6 \mathrm{t}$), suggesting a cyclic ether. The ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum of $\mathbf{4}$ indicated two methyl doublets, $\mathrm{H}-14$ and $\mathrm{H}-13$ (0.88 and 0.73 ppm), an $\mathrm{Me}-15$ singlet (1.00 ppm), an $\mathrm{H}_{2}-1$ singlet (2.39 ppm), and two one-proton AMX-type signals for $\mathrm{H}_{2}-12$ (3.91 and 3.60 ppm). Detailed inspection of the HMQC and HMBC spectra allowed unambiguous proof for the tricyclic skeleton including the positions of both carbonyl groups. Crucial long-range ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ correlations by HMBC were: $\mathrm{H}-12$ ($\delta 3.91$ and 3.60) with $\mathrm{C}-10(\delta 78.0)$ and $\mathrm{C}-6(\delta 56.8)$; $\mathrm{H}-1(\delta 2.39)$ with $\mathrm{C}-2(\delta 207.7), \mathrm{C}-10$, and $\mathrm{C}-5(\delta 40.0)$; $\mathrm{H}-6(\delta 2.50$) with $\mathrm{C}-10, \mathrm{C}-5$ and $\mathrm{C}-7(\delta 211.5)$. The value of diaxial coupling constants of $\mathrm{H}-4$ and $\mathrm{H}-11(12.3 \mathrm{~Hz}$ in both cases) indicated an equatorial position of $\mathrm{Me}-14$ and $\mathrm{Me}-13$. It was in agreement with an nOe experiment, which showed correlations between Me- 14 and $\mathrm{H}-6$ and between $\mathrm{H}-4$ and $\mathrm{H}-11$. In addition, some other nOe's were observed: between $\mathrm{H}-12 \beta$ and $\mathrm{H}-8 \alpha$; between $\mathrm{Me}-15$ and H $9 \beta, \mathrm{H}-1 \beta$ and $\mathrm{H}-3 \beta$. These data established the relative stereochemistry of 4 . Diketone 4 possesses a new terpenoid structure, for which we suggest the name nardosinoxane, based on the structural relationship of 4 with the nardosinane skeleton (3).
${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra of guaiane derivative 5 displayed strong similarity to those of the known 6,10-guaiadien-4-ol [18] (4). The hreims suggested a molecular formula of $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2}$ with five degrees of unsaturation. On the basis of ${ }^{13} \mathrm{C}-\mathrm{nmr}$ signals of two C-C double bonds ($153.4,149.1,121.3,106.9 \mathrm{ppm}$) and an ester carbonyl ($170.6 \mathrm{ppm}, \nu \max 1725 \mathrm{~cm}^{-1}$), 5 was bicyclic. $\mathrm{A}^{13} \mathrm{C}$ - nmr triplet at 106.9 ppm and, correspondingly, two broad singlets at 4.77 and 4.70 ppm in the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum were indicative of an exocyclic methylene. A methyl group (s, 1.46 ppm) presumably was attached to the carbon bearing the acetoxy group. The nature of the bicyclic system with all carbon connectivities was established by analysis of HMQC and HMBC spectra. Because of full analogy of the spectral data and optical rotation ($[\alpha] \mathrm{D} 0^{\circ}$) of 5 with the known racemic alcohol 19 (4), these two compounds should have the same relative stereochemistry. The racemic nature of $\mathbf{1 8}$ as reported by Bowden et al. (4) is based on an X-ray crystallographic analysis carried out on the related diol 19. While a detailed X-ray structural analysis of diol 19 was not carried out, diol 19 crystallizes in a space group that requires a racemic mixture (J. Clardy, personal communication).

The hreims of nornardosinane derivative 6 indicated a molecular formula of $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4}$ with five degrees of unsaturation. The ir spectrum showed strong absorptions at 3568 and $1706 \mathrm{~cm}^{-1}$ which, coupled with ${ }^{13} \mathrm{C}$-nmr signals at 205.7, 202.1, and 63.1 ppm , indicated an hydroxyl and two oxo carbonyls. The remaining oxygen atom was part of a trisubstituted epoxide bsed upon ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-nmr signals ($\delta 3.23 \mathrm{~d}$; $65.1,59.4 \mathrm{ppm})$; hence 6 was bicarbocyclic. HMQC and HMBC experiments furnished unambiguous assignment of all ${ }^{13} \mathrm{C}$-nmr signals. The ${ }^{1} \mathrm{H}$-nmr spectrum of 6 (in $\mathrm{Me}_{2} \mathrm{CO}-d_{6}$) and appropriate spin-decoupling experiments proved the regiochemistry. $\mathrm{H}-2$ was equatorial on the basis of two small ($J=6.7$ and 1.2 Hz) coupling constants with $\mathrm{H}_{2}-3$. The coupling constant of $\mathrm{H}-1$ with $\mathrm{H}-2(J=4.4 \mathrm{~Hz})$ and W-coupling with $\mathrm{H}-3 \mathrm{eq}(J=1.2 \mathrm{~Hz}$) indicated an α-epoxide fused to ring A in boat conformation. Furthermore, the diaxial coupling of $\mathrm{H}-4$ with $\mathrm{H}-3 \mathrm{ax}(J=12.8 \mathrm{~Hz}$) established the equatorial conformation of $\mathrm{Me}-13$. The ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum of 6 showed W coupling ($J=1.6 \mathrm{~Hz}$) between $\mathrm{H}-6 \mathrm{eq}$ and $\mathrm{H}-8 \mathrm{eq}$ implying a $\mathrm{C}-6$ alpha substituent. These assignments were supported by an nOe experiment, which showed correlations of $\mathrm{Me}-13$ to H-6, and Me-14 to H-9ax. [After this paper was submitted D. Green and Y. Kashman (J. Nat. Prod., 55, 1186, 1992) reported the isolation of what appears to be the $\mathrm{C}-2$ epimer of 6 .]

A slightly more polar isomeric nornardosinane 7 had analogous spectral features. However, lack of W coupling between $\mathrm{H}-6$ and $\mathrm{H}-8 \mathrm{eq}$ and absence of an nOe between Me-13 and H-6 pointed to H-6ax. Although compounds 6 and 7 are 1,3-diketones, ${ }^{1} \mathrm{H}$-nmr spectra (in CDCl_{3}) did not show the presence of an enol. However, adsorption of 6 on Si gel for 5 h resulted in epimerization at C-6 and afforded a mixture of both compounds in approximate ratio 8:2 (6:7). Therefore, generation of 7 from 6 during isolation cannot be excluded.

In addition to the six new compounds 2-7, several known sesquiterpenoids were isolated from this specimen of L. africana. They were: bicyclogermacrene [8] (5), germacrene D [9] (6), 1,6-germacradien-5-ol \{10] (7), 1(11),5(12),6-germacratrien-2-ol acetate $[11]$ (8), 4-acetoxy-10-hydroxy-5-oxo-2,8-neolemnadiene [12] (2), lemnacarnol [13] (9), 2-oxolemnacarnol [14] (5,9), 11,12-dihydroxy-6, 10-eremophiladiene [15] (2), 4,10-diacetoxy-5-oxo-2,8-neolemnadiene [16] (2), and 2-acetoxy-1(11),6-germacradien-5-ol [17] (7).

The biologically active component of the extract of L. africana was eremophilanederived diol 15 (2). This compound displayed activity against leukemia in the P-388 assay at $1 \mu \mathrm{~g} / \mathrm{ml}$. Its cytotoxicity in the CV-1 assay was $10 \mu \mathrm{~g} / \mathrm{ml}$.

EXPERIMENTAL

General experimental procedures.-Ir spectra were measured in CHCl_{3} solution on PerkinElmer 1420 or Nicolet 5-MX Ft-ir spectrometers. Uv spectra were taken in MeOH on a Hewlett Packard 8452A spectrophotometer. ${ }^{1} \mathrm{H}$-nmr spectra were recorded at 500 MHz and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra at 125 MHz on a General Electric GE Ω-500 in CDCl_{3}, unless otherwise stated. Mass spectra were obtained with a VG 70/SE mass spectrometer by electron impact. Optical rotations were determined on a Japan Spectroscopic DIP-370 polarimeter at 25°. All solvents were distilled prior to use. The yield of each compound is based on the weight of the initial extract.

Isolation.-L. africana was collected by SCUBA on the east shore of Pohnpei, Federated States of Micronesia, in June 1990, at -7 m . The soft coral was frozen on collection, identified by Dr. Y. Benayahu of Tel-Aviv University, and lyophilized to yield 103.0 g of dry mass, which was extracted thrice with EtOAc, followed by removal of the solvent in vacuo. The extract (13.3 g) was subjected to Si gel flash chromatography and rapidly eluted with a step gradient of ErOAc in hexane.

The fraction eluted with hexane-ErOAc ($95: 5$) (3.46 g) was subjected to RP-18 flash chromatography. The fraction eluted with MeCN was purified by hple on RP-18 in MeCN.

4-Acetoxy-2,8-neolemnadien-5-one [2].-Oil (32 mg, 0.24%): $[\alpha] \mathrm{D}+441^{\circ}\left(c=0.2, \mathrm{CHCl}_{3}\right)$; uv λ $\max 286 \mathrm{~nm}(\epsilon 205)$; hrms [M] ${ }^{+} 276.1726(5 \%)$ (calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3}, 276.1726$); ir $\nu \max$ 1737, 1717 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 6.42(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 5.69(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 5.48(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-2), 2.63(1 \mathrm{H}, \mathrm{dd}, J=5.0,2.4$ $\mathrm{Hz}, \mathrm{H}-6), 2.61(1 \mathrm{H}, \mathrm{dd}, J=8.5,5.0 \mathrm{~Hz}, \mathrm{H}-6), 2.38(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 2.17(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 2.10(3 \mathrm{H}, \mathrm{s}$, Ac), $2.09(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 1.91\left(1 \mathrm{H}, \mathrm{ddq}, J_{\mathrm{q}}=7.0, J_{\mathrm{d}}=10.0,5.0 \mathrm{~Hz}, \mathrm{H}-12\right), 1.68(3 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}$, $\mathrm{H}-14), 1.53(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-11), 1.01(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-13), 0.94(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{H}-15) ;{ }^{13} \mathrm{C}-\mathrm{nmr} \delta 202.7$ (C5), 170.2 (Ac), $144.6(\mathrm{C}-8), 139.4(\mathrm{C}-2), 126.3(\mathrm{C}-3), 124.4(\mathrm{C}-9), 76.3(\mathrm{C}-4), 44.4(\mathrm{C}-6), 43.6(\mathrm{C}-1)$, 39.0 (C-12), 28.3 (C-7), 27.0 (C-11), 25.3 (C-10), 22.5 (C-13), 20.6 (Ac), 18.3 (C-14), 17.0 (C-15).

12-Acetoxy-1(10)-aristolene [3].-Colorless oil ($65 \mathrm{mg}, 0.48 \%$): $[\alpha] \mathrm{D}-62^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$; hrms $\left[\mathrm{M}^{+}{ }^{+} 262.1934(10 \%)\right.$ (calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2}, 262.1932$) ir $v \max 1730 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 5.27(1 \mathrm{H}, \mathrm{dd}$, $J=2.2,4.5 \mathrm{~Hz}, \mathrm{H}-1), 3.81(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}, \mathrm{H}-12), 3.63(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}, \mathrm{H}-12), 2.25(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-9 \beta$), $2.05(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.02(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \beta), 1.96(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 1.77(1 \mathrm{H}, \mathrm{ddd}, J=13.0,5.7$, $1.2 \mathrm{~Hz}, \mathrm{H}-9 \alpha), 1.72\left(1 \mathrm{H}, \mathrm{ddq}, J_{\mathrm{q}}=7.0, J_{\mathrm{d}}=13.5,7.5 \mathrm{~Hz}, \mathrm{H}-4\right), 1.44(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 1.43(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ $8 \alpha), 1.10(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-13), 1.09(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15), 0.97(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{H}-14), 0.95(1 \mathrm{H}, \mathrm{ddd}, J=9.5$, $8.9,2.9 \mathrm{~Hz}, \mathrm{H}-7), 0.76(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}, \mathrm{H}-6) ;{ }^{13} \mathrm{C} \mathrm{nmr} \delta 171.4$ (AcO), 143.3 (C-10), 121.0 (C-1), 75.5 (C-12), 36.5 (C-4), 36.3 (C-5), 30.9 (C-6), 29.5 (C-9), 27.1 (C-3), 25.6 (C-2), 22.7 (C-14), 22.4 (C-11), 21.0 (Ac), 19.9 (C-8), 16.8 (C-7), 15.7 (C-15), 12.3 (C-13).

4-Acetoxy-6,10-guaiadiene [5].-Oil (3 mg, 0.02%): $[\alpha] \mathrm{D} 0^{\circ}\left(c=0.1, \mathrm{CHCl}_{3}\right)$; hrms $[\mathrm{M}]^{+}$ $262.1936(10 \%)$ (calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2}, 262.1932$); ir $v \max 1725 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 5.58(1 \mathrm{H}, \mathrm{d}, J=3.1$ $\mathrm{Hz}, \mathrm{H}-6), 4.77(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-11), 4.70(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-11), 2.55(1 \mathrm{H}, \mathrm{m}, J=12.9, \mathrm{H}-5), 2.50(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 9α), $2.27(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1), 2.26(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 2.22(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \beta), 2.12-1.97(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}-8 \alpha, \mathrm{H}-$ $9 \beta, \mathrm{H}-12), 1.98(3 \mathrm{H}, \mathrm{s}, \mathrm{AcO}), 1.88(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 1.78(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 1.46(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15), 1.01(3 \mathrm{H}$, $\mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{H}-13), 1.00(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{H}-14) ;{ }^{13} \mathrm{C} \mathrm{nmr} \delta 170.6(\mathrm{AcO}), 153.4(\mathrm{C}-10), 149.1$ (C7), 121.3 (C-6), 106.9 (C-11), 89.8 (C-4), 53.4 (C-5), 45.9 (C-1), 37.5 (C-12), 37.2 (C-3), 36.9 (C-9), 29.7 (C-8), 25.7 (C-2), 22.3 (AcO), 21.5, 21.3 (C-13, C-14), 21.1 (C-15).

1,6-Germacradien-5-ol [10].-Compound $10(43 \mathrm{mg}, 0.32 \%)$: spectral data identical with literature (7).

1(11),5(12),6-Germacratrien-2-ol acetate $\{11\}$.-Compound 11 (27 mg, 0.20%): spectral data identical with reported data (8).

The fraction eluted with ErOAc/hexane (6:4) was evaporated (3.8 g) and subjected to cc on Si gel and eluted with a step gradient of EtOAc in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The fraction eluted with $\mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2:8) was purified using Sephadex LH-20 [MeOH- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1)] followed by RP-18 (elution with MeCN) to yield 900 mg oily residue after evaporation. Part of this product (180 mg) was subjected twice to preparative tic on silica using toluene- $\mathrm{EtOAc}(1: 1)$ and hexane- $\mathrm{ErOAc}(1: 1)$ as developers, which yielded three compounds, 4, 12 and 15 .

2,7-Nardosinoxanedione [4]. White, semicrystalline ($9 \mathrm{mg}, 0.33 \%$): $\{\alpha] \mathrm{D}+87^{\circ}\left(c=0.3, \mathrm{CHCl}_{3}\right)$; uv $\lambda \max 286 \mathrm{~nm}(\epsilon 107)$; ir $\nu \max 1710 \mathrm{~cm}^{-1} ;$ hrms [M] ${ }^{+} 250.1518(100 \%)($ calcd 250.1569$) ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta$ $3.91(1 \mathrm{H}, \mathrm{dd}, J=6.8,12.7 \mathrm{~Hz}, \mathrm{H}-12 \mathrm{eq}), 3.60(1 \mathrm{H}, \mathrm{dd}, J=12.7,12.3 \mathrm{~Hz}, \mathrm{H}-12 \mathrm{ax}), 2.93$ (1 H , ddq, $\left.J_{\mathrm{q}}=7.1, J_{\mathrm{d}}=5.2,12.3 \mathrm{~Hz}, \mathrm{H}-4\right), 2.66(1 \mathrm{H}$, dddd, $J=19.2,8.4,3.1,1.2 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{eq}), 2.50(1 \mathrm{H}, \mathrm{d}$, $J=5.1, \mathrm{H}-6), 2.42(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-11$ and $\mathrm{H}-8 \mathrm{ax}), 2.39(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 2.28(1 \mathrm{H}, \mathrm{dd}, J=14.8,5.2 \mathrm{~Hz}, \mathrm{H}-$ $3 \mathrm{eq}), 2.23(1 \mathrm{H}, \mathrm{dd}, J=14.8,12.3 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{ax}), 2.10(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 1.00(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15), 0.88(3 \mathrm{H}, \mathrm{d}$, $J=7.1 \mathrm{~Hz}, \mathrm{H}-14), 0.73(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{H}-13)$; ${ }^{13} \mathrm{C} \mathrm{nmr} \delta 211.5(\mathrm{C}-7), 207.7(\mathrm{C}-2), 78.0(\mathrm{C}-10)$,
67.6 (C-12), 56.8 (C-6), 50.2 (C-1), 44.8 (C-3), 40.0 (C-5), 39.0 (C-8), 31.8 (C-4), 31.5 (C-9), 25.9 (C11), 16.0 (C-15), 14.8 (C-13), 14.2 (C-14).

4-Acetoxy-10-hydroxy-5-oxo-2,8-neolemnadiene [12] ($67 \mathrm{mg}, 2.5 \%$), was identified by comparing its spectral data with reported values (2). For 11,12-Dibydroxy-6, 10-eremophiladiene [15] (12 mg, 0.45\%), spectral data were identical with those reported (2).

Lemnacarnol [13] ($80 \mathrm{mg}, 0.60 \%$) was obtained from a fraction eluted with EtOAc by crystallization from CHCl_{3}. Spectral data were identical with those reported (9). 2-Oxolemnacarnol $\{14\}$ ($200 \mathrm{mg}, 3.0 \%$) crystallized in the refrigerator from a fraction eluted with $\mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4:6) after solvent evaporation. Spectral data were identical with reported values (5).

1(10)-Epoxy-2-bydroxy-12-nornardosin-7,11-dione [6,7].-The fraction eluted with EtOAc (1.75 g) was evaporated and subjected to crystallization in $\mathrm{C}_{6} \mathrm{H}_{6}$. Crude lemnacarnol [13] was removed and the mother liquor (1.07 g) was subjected to silica flash chromatography. Elution with hexane-i- BuOH (4:6) followed by hplc on RP-18 in MeCN afforded $12 \mathrm{mg}(0.09 \%)$ of 6 as a yellow oil: [α \}D $-307^{\circ}(c=1.0$, CHCl_{3}); uv λ max 298 nm ($\in 193$); it v max $3568,1706 \mathrm{~cm}^{-1}$; hrms [M] 252.1368 (10%) (calcd for $\left.\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4}, 252.1361\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 4.04(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-2), 3.78(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}, \mathrm{H}-6), 3.23(1 \mathrm{H}$, $\mathrm{dd}, J=4.4,0.9 \mathrm{~Hz}, \mathrm{H}-1), 3.15(1 \mathrm{H}, \mathrm{ddd}, J=14.4,13.4,8.0, \mathrm{H}-8 \mathrm{ax}), 2.46(1 \mathrm{H}, \mathrm{ddd}, J=14.4,13.4$, $5.5 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{ax}), 2.39\left(1 \mathrm{H}, \mathrm{ddt}, J_{\mathrm{d}}=14.4,5.5, J_{\mathrm{r}}=1.6 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{eq}\right), 2.27(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-12), 2.17(1 \mathrm{H}$, $\left.d d q, J_{\mathrm{q}}=6.8, J_{\mathrm{d}}=6.1,10.3 \mathrm{~Hz}, \mathrm{H}-4\right), 1.59(1 \mathrm{H}, \mathrm{ddd}, J=14.4,8.0,1.6 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{eq}), 1.48(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-3), 1.45(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 0.91(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-14), 0.82(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{H}-13) ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{Me}_{2} \mathrm{CO}-d_{6}\right) \delta$ $4.02(1 \mathrm{H}, \mathrm{bdd}, J=6.7,4.4 \mathrm{~Hz}, \mathrm{H}-2), 3.65(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}, \mathrm{H}-6), 3.11(1 \mathrm{H}, \mathrm{dd}, J=4.4,1.2, \mathrm{H}-1)$, 3.07 (1 H, ddd, $J=14.7,13.3,7.7 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{ax}), 2.83(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH}), 2.53(1 \mathrm{H}, \mathrm{ddd}, J=14.5,13.3,5.9$ $\mathrm{Hz}, \mathrm{H}-9 \mathrm{ax}), 2.30(1 \mathrm{H}, \mathrm{ddt}, J=14.7,5.9,1.6 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{eq}), 2.25(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-12), 2.22$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$), $1.57(1 \mathrm{H}, \mathrm{ddd}, J=15.1,12.8,6.7 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{ax}), 1.47(1 \mathrm{H}, \mathrm{ddd}, J=14.5,7.7,1.6 \mathrm{~Hz}), 1.34(1 \mathrm{H}$, ddr, $\left.J_{\mathrm{d}}=15.1,3.8, J_{\mathrm{t}}=1.2 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{eq}\right), 0.90(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-14), 0.82(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{H}-13) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ $\left(\mathrm{CDCl}_{3}\right) 8205.7(\mathrm{C}-7), 202.1(\mathrm{C}-11), 72.7(\mathrm{C}-6), 65.1(\mathrm{C}-10), 63.1(\mathrm{C}-2), 59.4(\mathrm{C}-1), 43.2(\mathrm{C}-5), 36.4$ (C-8), 35.7 (C-3), 32.8 (C-12), 30.1 (C-9), 25.0 (C-4), 17.7 (C-14), 15.4 (C-13).

Elution with hexane-t-BuOH (2:8) followed by hplc on RP-18 in MeCN afforded 5 mg of $7(0.04 \%)$ as a yellow oil: $[\alpha] D-78^{\circ}\left(c=0.3, \mathrm{CHCl}_{3}\right)$; hrms $[\mathrm{M}]^{+} 252.1358(20 \%)$ (calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4}$, 252.1361); ${ }^{1} \mathrm{H} \mathrm{nmr} \delta 4.09(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 3.73(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 3.41(1 \mathrm{H}, \mathrm{dd}, J=4.7,1.3 \mathrm{~Hz}, \mathrm{H}-1), 2.73$ (1 H , ddd, $J=13.7,13.3,5.5 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{ax}), 2.51(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{eq}), 2.50(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9 \mathrm{ax}), 2.24(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ 12), $2.06\left(1 \mathrm{H}, \mathrm{ddq}, J_{\mathrm{q}}=6.7, J_{\mathrm{d}}=13.0,2.7 \mathrm{~Hz}, \mathrm{H}-4\right), 1.51(1 \mathrm{H}, \mathrm{ddd}, J=15.0,13.0,5.8 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{ax})$, $1.48(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9 \mathrm{eq}), 1.35(1 \mathrm{H}$, dddd, $J=15.0,2.7,1.3,1.1 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{eq}), 1.21(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-14), 0.72$ (3H, d, J=6.7, H-13); ${ }^{13} \mathrm{C}$ nmr $\delta 206.4(\mathrm{C}-7), 205.4(\mathrm{C}-11), 69.5(\mathrm{C}-6), 68.1(\mathrm{C}-10), 63.8(\mathrm{C}-1), 63.0$ (C-2), 44.9 (C-5), 38.5 (C-8), 36.5 (C-3), 34.1 (C-12), 30.6 (C-4), 29.7 (C-9), 17.8 (C-13), 14.2 (C-14).

Bicyclogermacrene [8] and germacrene D [9]. -The fraction eluted with hexane (90 mg) was subjected to Si gel flash cc and afforded 85 mg of an oil (eluted with hexane). This mixture was then purified twice by hplc on silica in hexane, yielding $6 \mathrm{mg}(0.04 \%)$ of 8 . Spectral data were identical with reported values (5).

Purification of the oil by hplc on silica in hexane, followed by hplc on RP-18 in MeCN afforded 23 mg (0.17%) of 9 , with spectral data as previously reported (6).

4,10-Diacetoxy-5-oxo-2,8-neolemnadiene [16] and 2-acetoxy-1(11),6-germacradien-5-ol [17].-The fraction eluted with hexane-EtOAc (7:3) (1.15 g) was subjected to RP-18 cc. The fraction eluted with MeCN was purified twice by hplc on RP-18 using MeCN and $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$ (4:1), which afforded 36 mg (0.27%) of $\mathbf{1 6}(2)$ and $19 \mathrm{mg}(0.14 \%)$ of $\mathbf{1 7}$ (7).

ACKNOWLEDGMENTS

We thank Jay M. Corgiat, Mark T. Hamann and Toshio Ichiba for collecting the soft coral, Dr. Y. Benayahu for identification, and Wesley Y. Yoshida for nmr instrumental assistance. For financial support we are grateful to the Sea Grant College Program, the National Science Foundation, and PharmaMar, S.A.

LITERATURE CITED

1. B. Tursch, J.C. Braekman, D. Daloze, P. Fritz, A. Kelecom, R. Karlsson, and D. Losman, Tetrabedron Lett., 747 (1974).
2. R.R. Izac, W. Fenical, B. Tagle, and J. Clardy, Tetrabedron, 37, 2569 (1981).
3. B.F. Bowden, J.C. Coll, S.J. Mitchell, B.W. Skelton, and A.H. White, Aust. J. Cbem., 33, 2737 (1980).
4. B.F. Bowden, J.C. Coll, and S.J. Mitchell, Aust. J. Chem., 33, 1833 (1980).
5. B.F. Bowden, J.C. Coll, S.J. Mitchell, J.L.E. Nemorin, and S. Sternhell, Tetrabedron Lett., 21, 3105 (1980).
6. K. Morikawa and Y. Hirose, Tetrabedron Lett., 1799 (1969).
7. R.R. Izac, M.M. Bandurraga, J.M. Wasylyk, F.W. Dunn, and W. Fenical, Tetrabedron, 38, 301 (1982).
8. E. Fattorusso, S. Magno, L. Mayol, V. Amico, G. Oriente, M. Piattelli, and C. Tringali, Tetrabedron Lett., 4149 (1978).
9. D. Daloze, J.C. Braekman, P. Georget, and B. Tursch, Bull. Soc. Chim. Belg., 86, 47 (1977).

Received 3 August 1992

